Khusrow Niazi
United States of America

the Director of Peripheral Vascular Interventions at Emory University, Atlanta, USA. He treats patients with coronary artery, carotid artery, peripheral arteries and chronic venous disease. He is actively involved in clinical research and teaches nationally and internationally.
NON-INVASIVE VASCULAR TESTING FOR CARDIOLOGISTS

Khusrow Niazi, MD, FACC, FSCAI
Member, PVD Council of American College of Cardiology
Director, Peripheral Vascular Intervention
Emory University, Atlanta, Georgia
Comorbidity of Atherosclerotic Disease

Patients with one manifestation often have coexistent disease in other vascular beds.

Coronary Artery Disease
- 33%

Cerebrovascular Disease
- 15%

PAD
- 12%

Intersection:
- 13%

- 8%

- 14%

- 5%
what test to do?
NON-INVASIVE TESTING IN THE OFFICE

Ankle/Brachial Index

Arterial Doppler Duplex

Segmental Pressures

Pulse Volume Recording
ANKLE / BRACHIAL INDEX (ABI)

Systolic ankle pressure / Systolic arm pressure

Systolic Brachial pressure

Dorsalis Pedis pressure

Posterior Tibial pressure

Ankle mmHg / Brachial mmHg = ABI
Conclusions:
The LAP ABI has better sensitivity and overall accuracy in comparison to the HAP ABI to diagnose PAD.
What to do with ABI
Arterial insufficiency

ABI*

< 0.7

MRA/CTA/duplex

0.7 – 1.3

Exercise ABI

> 1.3

Non-diagnostic

Arterial duplex

0.7 – 0.8

Mod/severe pain &/or limitation

Mild pain &/or no limitation

>0.8 & <1.0

Repeat in a year

Arterial duplex/MRA/CTA

* Look at arterial waveforms
Segmental pressures
Diagnosis of PAD

Pulse volume recordings (PVRs)

Normal
- rises rapidly
- falls slowly
- dicrotic notch
Segmental pressures

HT >30 mmHg Brachial systolic
AK
BK
Ankle

Between two adjacent cuffs <20 mmHg
Corresponding segments <20 mmHg
Toe-Brachial index

- Normal > 0.70
- Helpful when ABI > 1.30
PULSE VOLUME RECORDING

NORMAL
- rises rapidly
- falls slowly
- dicrotic notch

SEVERE
- loss of dicrotic notch
- systolic rise slower
- peak delayed
- flat/rounded
Noninvasive Physiologic Methods

Doppler US – no images of arteries
CWD

Duplex US – images of arteries
PWD
Arterial waveform - Normal

Three phases – Triphasic
Forward flow – systole
Reverse flow – early diastole
Forward flow – late diastole
Duplex scanning

- Anatomic
- Physiologic

Spectral waveform analysis remains the primary source of duplex diagnostic information
<table>
<thead>
<tr>
<th>Artery Type</th>
<th>Normal Peak Systolic Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext Iliac/CFA</td>
<td>100-140 cm/sec</td>
</tr>
<tr>
<td>Femoral arteries</td>
<td>80-100 cm/sec</td>
</tr>
<tr>
<td>Popliteal arteries</td>
<td>60-80 cm/sec</td>
</tr>
<tr>
<td>Tibial arteries</td>
<td>40-60 cm/sec</td>
</tr>
</tbody>
</table>
Peripheral Arterial Stenosis
by Duplex

- Waveform shape
- PSV
- Spectral window
- Peak velocity ratio
Peripheral Arterial Stenosis by Duplex

Mild disease – < 20% stenosis

Moderate – 20-49% stenosis

Significant – 50-99% stenosis

Occluded
Mild disease – < 20% stenosis

- Mild spectral broadening
- <30% increase in PSV
- Normal waveform
Moderate – 20-49% stenosis

- Spectral broadening
- 30-100% increase in PSV
- Reverse flow component present
Significant – 50-99% stenosis

- Loss of reverse flow component
- Marked spectral broadening
- >100% increase in PSV
- Monophasic waveform
- Post stenotic turbulence
Occluded

- Absence of flow
- Damped proximal and distal waveforms
- Collateral flow
Arterial waveform - distal to stenosis

- spectral broadening
- single forward component
- no reversal – above baseline
- PSV is lower
- flat and rounded
Peripheral Arterial Stenosis by Duplex

- Strong correlation with peak velocity ratio

- $PVR \geq 2.4 \implies \geq 50\%$ stenosis
- $PVR \geq 4.0 \implies \geq 80\%$ stenosis
- $PVR \geq 7.0 \implies \geq 90\%$ stenosis

Ranke et al: 1992
Common sites of disease involvement

- SFA – adductor canal
- Aorto-iliac disease
- Trifurcation vessels (crural)
MRA
Thank you